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I. Introduction

The purpose here is to study the Lyapunov stability properties of solu-

tions of a system of Volterra integrodi_fferential equations of the form

t
(L) x 1 (t) = Ax(t) + f B(t-s)x(s)ds	 d/dt)

0

where t > T and where x(t) = f(t) on 0 < t < T. Here 't> 0 is a given

constant, f is a given continuous, vector valued function and both A and

B(t) are square matrices. The solution of (L) with initial values (T,f)

will be denoted by x(t,T,f). If T = 0, then the function f reduces to

an initial vector f(0) = x .
0

Volterra integrodifferential e q uations occur in a variety of appli-

cations. In these applications the initial time T is always zero. At first

sight the initial value problem (L) with T > 0 appears to be somewhat

artificial. Though it may be artificial, it is also useful. For example

Grossman and Miller [1] studied the asymptotic behavior of solutions of non-

linear problems of the form

t

YKQ = A[Y(t)+h1(Y(t))) + f B( t - s ) [Y(s)+h2(Y(s)))ds, Y( 0 ) = YO
0

when jyj is small. The terms hl(y) and h2(y) were assumed to be smooth

functions of order o(j yl ) as y 4-0. The results in [ 1] depend on certain

apriori information about the resolvent R(t) associated With the linear

system (L) and its derivative R'(t). In this paper we shall prove that if

B(t) c L1(C,-), then R(t) is of class L IA -) if and only if the trivial
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solution of system (L) is uniformly asymptctically stable. When B(t) and

R(t) are both in L1(O, A),then it is easy to see that R'(t) E L1(0^^)

and that R(t) tends to zero as t -4 -. This is ex c,ly the type of in-

formation which is necessary in order to apply the results in [ 11.

The remainder of the paper is organized as fol'.ows. Section II

contains preliminary definitions3 aA results. In section III we define

various types of Lyapunov stability for (L). Thee definitions are natural

extensions of the corresponding rotioc!.s for ordinary differential equa-

tions. Theorem 1 contains general necessary and sufficient conditions for

uniform stability and uniform asymptotic stability, The remainder of the

section is devoted to connections between stability of (L) and stability

properties of a related Volterra integrodifferential equation with infinite

memory. In section IV we show that if B(t) and R(t) are in L1(0.P,),

then the trivial solution of (L) is uniformly asymptotically stable. More-

over for any initial pair (T,f) the solution x(t,r,f) e L 1 on

Conversely if B(t) is L1 and (L) is uniformly asymptotically stable they_

R(t) must be in L1(0, 00). The proof of the converse may be of some inde-

pendent interest since it depends on constructing a Lyapunov functional for

(L).

In sections V and VI we give some sufficient conditions on A and

B(t) in order that the trivial solution of (L) is stable, uniformly stable,

asymptotically stable or uniformly asymptotically stable. We assume that

B e L1(0,-) .. that B*(s) is the Laplace transform of B(t), that is

00

B*(s) = J exp(-st)B(t)dt,
0
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and that the determinant of s - A - B*(s) / 0 when Re s > 0. These as-

sumptions and some additional integrability assumptions on B(t) imply sta-

bility of (L). Section VII contains some examples and conjectures.

II. Preliminaries

Let R  denote real, n-dimensional Euclidean space of column
n	

/2
vectors x = col(xl,x21 ... ,x n) with the Euclidean ncrm IxI = ( 	 x2 1).

1 J
Let R+ be the half line 0 < t < -. The symbols C(R +) = C[0 .,-) will

denote the set of all continuous functions cp; R+ -^Rn with the topology

of uniform convergence on compact subsets of R+ (the compact-open topology).

Given cp in C(R +) define

II (p II t = max(l(p(s)I ; 0 < s < t).

The symbols L P(R+) will denote the usual Lebesgue space of measurable

functions f such that

00

IIfIIp = (fl f(t)l Pdt) 1/P < ^.
0

Definition 1. Let P be a given function with domain R + x C(R +) and range

in Rn . This function P(t, f) will be called nonanticipati.ve if and onl,^

if for each t > 0 one has P(t .,f) = P(t,T) wherever f and q) are con-

tinuous functions such that f(s) = cp(s) on 0 < s < t.
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Definition 2. Let P(t,f) be a continuous function on R + X C(R +) into

Rn. Then

i) P(t,f) is local]. Lipschitz coo'-i.nuous in f if and only if

given any palr ^f positive constants A and B there exists a constant

L > 0 such that I P(t, f) - P(t,q))	 f-q>ll t whenever 0 < t < A and both

f  t and I C
P

1 
t < B.

ii) P(t,f) is locally Lipschitz continao ,zs in f uniformly* in

t if it is locally Lipschitz continuous in f and the Lipschitz constants

L can be chosen independently of A.

Note that if P(t,f) is continuous in (t,f) and locally Lip-

schitz continuous in f, then it is automatically nonanticipative.

Consider a system of equations of the form

t
(2.1)	 y'(t) = Ay(t) + f B(t-s)y(s)ds + P(t,y)

0

where t > T and y(t) = f(t) on 0 < t < T. If B(t) is locally L1

on R+ and if P(t,f) is continuous and nonanticipative, then for any pair

(T,f) of initial values in R+ X C(R+) the initial value problem (2.1)

has at least one local solution. Any local solution can be continued to the

right so long as it remains bounded. If P is locally Lipschitz continu-

ous in f, then the initial values (T,f) %:etermine the solution of (2.1)

uniquely. See Driver (2] for proofs and details of these assertions.

Definition 3. The resolvent R(t) associated w=th the linear system (L)

is the unique solution of the matrix equation
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t
(R)	 RI(t)	 AR(t) + f B(t-s)R(s),1s, R(0) = I

0

where I is the identity matrix.

If B(t) is locally L 	 on R +, P(t,f) is continuous and nor,-

anticipative and T = 0 then 2.1 may be rewritten in the e uivalentP	 ,	 (	 )	 Y	 q

variation of constants form

t
y(t) = R(t)f(0) + f R(t-s)P(s,y)ds (t _> 0).

0

See [1] for details. In particular if x(t,T,f) is the solution of (L)

for some initial pair (T,f), then

t	 __
x(t+T,T,f) = Ax(t+T,T,f) + f B(t-s)x(s+T,'r)f)ds

0

T	 r i,

+ f B(t+T- s)f(s)ds
0	 I

for t > 0 with x(T,T,f) = f(T). This inhomogenous initial value problem

can be solved with the aid of the variation of constants formula to obtain

t	 T

(2.2)	 x(t+T,T,f) = R(t)f(T) + f R(t-s){ f B(s +T- u)f(u) du) ds
0	 0

for all t > 0. This form of the solution of (L) will be needed _n the

sequel.

Let * denote the Laplace transformation. For example

( 2 .3)	 B*(s) = f exp(-st;)B(t)dt
0
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for all complex numbers s such that the integral exists. The following

result was proved in [1].

Lemma 1. Suppose that B E L1(R+ ) so that (2.3) is defined and continuous

when Re s > 0. If the determinental condition

(D)	 det(s-A-B*(s)) ^ 0 for Re s > 0

is true, then there exists a constant K > 0 such that

IR*(s)I < K( 1+1 sI )
- 1 

and I (R')*(s)I < K(l+l sl) -1 when Re s > 0.	 1 -

III. General Stability Considerations

Definition 4. Suppose B E L1 (0,T) for each T > 0. Consider the system.	 ? ''

(L) with initial conditions ( •r,f) E R+ x C(R+ ). The trivial solution x =_ 0

is called:

i) stable if given any T > 0 and any £ > 0 there exists a

number b > 0 (depending on £ and T) such that whenever f E C(R +) and

II^I T < 6, then the solution x(t,T,f)• exists for all t > T and satisfies

I x(t,T,f)I -<e.

ii) uniformly stable if it is stable and 8 can be chosen inde-

pendent of T > 0.

iii) asymptotically stable if it is stable and if given any (•r,f)

one has x(t, T, f) -> 0 as t -i -.

iv) uniformly asymptotically stable if it is uniformly stable and

if given any £ > 0 and any A > 0 there exists T(£) > 0 such that

ai
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I x(t+T(e)) T,f)I < e uniformly for all t > T, all T > 0 and all f with

1I fII T < A.

Theorem 1. Suppose B(t) is locally L 1 or R+ . Thens

i) the trivial solution of (L) is uniforms stablo if and only if

the function y(t) defined by

t
(3.1)	 y(t) = f If R(t-s)B(s+u)dsidu

0 0

exists and is finite for all t > 0 and the two functions R(t) and y(t)

are uniformly bounded on R+.

ii) the trivial solution of (L) is uniformly asymptotically stable

if and only if it is uniformly stable and both R(t) and y(t) tend to zero

as t -j oo.

Proof. Suppose x 0 is uniformly stable. Then there exists a constant

B such that for any (T, f) with T _> 0 and	 f11I T < 1 one has Ix(t +T,T,f)	 B

for all t > 0. If T = 0, then	 x(t +T, r,f)I = I x(t,0,f(0))I = I R(t)f(0)I < B

for all t > 0 and all f(0) satisfying If(0)I < 1. 	 In particular

IR(t)j < B for all t > 0. Similiarly if z(t) = x(t+T,T,f) - R(t)f(T),

then I2(t)I < 2B. By (2.2) z(t) must be of the form

t	 T

z(t) = f R(t-s)(f B(s +T-u)f(u)du)ds
0	 0

v	 T

= f R(t-s) ( f B(s+u) f(T-u)du)ds
0	 0
T t

= f (f R(t- s)B(s+u)ds)f(T-u)du.
0 0
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This means that for all t,T > 0

T t
f if R(t-s)B(s+u)dsldu < 2B.
0 0

Thus y(t) < 2B for all t > 0.

Conversely if lR(t)l < A and y(t) < A for some fixed constant

A. then by (2.2) one has

T t
l x(t+T,i,f)l < JR(t)f(T)l + if ( f R(t-s)B(s+u)ds)f(r-u)dul

0 0

< Al f( T)l + All f1l 1 < 2AllfllT.

Thus x 0 is uniformly stable. This proves part i). Part ii) follows in

a similiar manner. Q.E.D.

Let C[--,-) denote the set of all continuous functions

(P: R 1 -+R n such that for any t E R 1 the seminorms

(3. 2 )	 llCPil t = sup(l a)( s ) I : -. < s < t)

are finite. Let B e L 1(R+ ). Consider the initial value: problem

t
(LOO)	 X'(t) - AX(t) + f B(t- s)X(s)ds

-00

for t > T with X(t) = f(t) on -- < t < T. Here (T,f) is a pair of

initial data in R 1 x C(-m, 00). The various stability properties for the

Pon-



9

trivial solution of (LOO) can be defined in the same way as the correspond-

ing type of stability for (L), see Definition 4. 	 Note that this equation

is "autonomous" in tLe sense that for any (7,f) one has X(t,,,f) _

X(t-,c,(.',)fT) where fT is the translated function f ,t(t) = f(t+-r). In

particular it follows that one need only consider (LW) with initial time

T = 0. Moreover stability and uniform stability are equivalent.

Boundedness or stability for (L.) is rela.ed to uniform sta-

bility for (L). Indeed the following theorem is true.

Theorem 2. Let B E L1(R+). Then all of the following statements are

equivalent:

i) the trivial solution of (L) is uniformly stable.

ii) the trivial solution of (L^) is (uniformly) stable.

iii) R(t) is bounded and for each f e C[- a, o) the solution

X(t,0,f) of (L^) is bounded on R+.

Proof. Given initial values (0,F) let X(t,F) = X(t,O,F) be the corres-

ponding solution of (L.). Then for any t > 0 one has

t	 CO

X'(t,F) = AX(t,F) + f B(t-s)X(s,F)ds + f B(u)F(t-u)du.
0	 t

If R(t) is the resolvent of (L), then variation of constants yields

t	 «0

(3.3)	 X(t,F) = R(t)F(0) + f R(t-s) f B(u)F(8-u)duds.
0	 s

• i

First suppose that the trivial solution of (L) is uniformly



stable. By (3.3) it follows that

t	 Go

X(t,F) r R(t)F(0) + f R(t-s)f B(--+u)F(-u)duds
0	 0
.= t

= R(t)F(0) + f (f r;t-s)B(s +u)ds)F( -u)du,
0 0

so that

I''( t ,F)I < IR(t)IIF(o)I + y(t )IIRII0.

Here IIFII O is defined by (3.2) with CP = F and t = 0. Since R and y

are bounded, this proves that the trivial solution of (L) is stable.

Now assume the stability of (L^). Then there exists a constant

B such that for any F in C(-co,w) with IIFII O < 1 one has IX(t,F)I <B

for all t > 0. Given any unit vector x0 and any e > 0 let F(t) = 0

if t < -e and F(t) = (t/e + 1j:0 if t > -e. Then IIFII O < 1,

I X(t, F) I < B and

t	 e

X(t,F) = R(t)x0 + f R(t-s)(f B(s+u)F(-u)du)ds.
0	 0

In particular one has

t	 e

I R( t ) xoi :5 I X( t , F )I + f I R ( t - s )I f I B ( s+u)I duds

	

0	 0
t	 s+e

	

< B + f IR(t -s)I (f	 IB(u)Idu)ds

0	 s

10

1

for all t > 0, all e > 0 and all unit vectors x 0. On letting e -+ 0+
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one finds that IR(t)x0l < B for all t. Thus IR(t)I < B uniformly in

t. This proves iii).

Finally assume that iii) is true. Given any F, since X(t,F)

'	 and R(t) are bounded on R + then by (3.3) it follows that

t	 CO	 CO t

A 
t 
F = f R(t-s)f B(u)F(S-u)duds =	 (f R(t-s)B(s+u)ds)F(-u)d u

0	 s	 0 0

is uniformly bounded in t. For any fixed t > 0 the symbols At repre-

sents a bounded linear mapping of C[--,0] into R  with norm 11Atil

y(t). By the principle of uniform boundedness it follows that IlAtil

y(t) is uniformly bounded in t E R+. This provesi). Q.E.D.

The equivalence of i) and iii) in Theorem 2 remains true if in

iii) the statement "all F E C[--,0]" is replaced by "all almost periodic

F". Similiarly is iii) it would be sufficient to require that F E C[--20]

and additionally F(t) --+0 as t -4 -oo. In general we prove

Theorem 3. Suppose B E L1(R+) and R(t) is bounded. Let Y be a

closed, linear subs-pace of C[--,0] under the uniform norm such that ;riven

any f in C[--,0] there exists a sequence fn in Y such that

sup(I fn(t)j : t < 0 and n = 1,2y3.....) <- and such that fn(t) -^ f(t)

as n -^ co uniformly on compact subsets of -- < t < 0. If for any f in

Y the solution X(t,f) of (LW) is bounded on R+, then the trivial solu-

tion of (L) is uniformly stable.

Proof. As in the proof of Theorem 2 above it follows that (At) is a one

parameter family of linear maps on Y into R n. The At are again norm

bounded, that is if
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IIAt II Y = sup (II AtfII: 111	 = 1, f ` Y),

then A* = sup II At II Y < °°. Civen f in C[- co,0], let fn be the approxi-
t

mating sequence guaranteed by the hypotheses. Then for any t and any

T > 0 one has

t	 00

if R(t-s)(f B(s+u)[fn(-u)-f(-u)]du)dsl
0	 0

t	 T
< f IR(t -s)I (f IB(s +u)I I fn(-u)-f(-u)Idu)

0	 0
00

+ f I B ( s+u)Id u(II fn1I 0+111 0 )] ds —>o
T

as T, n -4	 Then (3.3) implies that X(t, f n) - > X(t, f) as n -a oo for each

fixed t > 0. In particular

I X(t, f) I < lim infI X(t, fn) I < ( A*+supl R(t) I ) lim infll f nil 0 < 00

so that X(t,f) is bounded on R + . Q.E.D.

Theorem 2 has the following corollary.

Corollary 1. Suppose B e L 1(R+). It' the trivial solution of (L) is

uniformly stable, then determinant of s-A-B*(s) f 0 when Re s > 0.

Proof. Suppose that there exists a complex number s0 and a unit vector

x0 such that Re s0 > 0 and (so -A-B*(s0 ))x0 = 0. If one defines X(t)

exp(s0t)x0, then X(t) is bounded on -- < t < 0 and

t
XI (t) - Ax(t) - f B(t- s)x(S)ds = (so-A-B*(s0 ))xo exp( Sot) = 0

-W
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for all t. Since X(t) becomes unbounded as t --) oo, then by Theorem 2,

parts i) and iii) it follows that (L) is not uniformly stable. Q.E.D.

The same type of analysis is available for studying asymptotic

stability. Three results of this type are quoted. Their proofs are

similiar to the proofs given above.

Theorem 4. Let B E L1(R) and suppose that (L) is uniformly stabl e. Then

the following statements are equivalent:

{

i) the trivial solution of (L) is uniformly asymptotically stable.

ii) ig ven E > 0 there exists T(S) > 0 such that the solution

X(t,F) of (L.) with initial value F at T = 0 satisfies the bound

X t+T E F < e uniformly for all t> 0 and all F E C[--,Ol with

r

IXO <1.

Theorem 5. Let Y be a closed sunspace of C[--,0] which satisfies the 	 +

approximation condition of Theorem 3. Then in Theorem 4 one can replace

the condition "all F c C[-w,0]" by "all F in Y".

Corollary 2. Suppose B E L 1(R+). If the trivial solution of (L) is uni-

formly asymptotically stable, then the determinant (s-A-B*(s)) ^ 0 when-

ever Re s > 0.

1-Properties of SolutionsIV. L 	 f
i

The purpose of this section is to prove the most important result

of the paper, namely the equivalence of uniform asymptotic stability of (L)
I

with R(t) in L1(0,-). Half of this assertion is easy.

Theorem 6. Suppose B(t) and R(t) are both in L1(R+). :hen
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i) R' E L1 (R+ ) and both R(t) and R' (t) --> 0 as t

ii) the trivial solution of (L) is uniformly asymptotically

stable, and

iii) for any initial value (T I f) in R+ x C(R+ ) the solution

x(t,TI f) of (L) is in L1(TICo).

Proof. Since A is a constant matrix, then AR(t) E L l (R+ ). Moreover,

the convolution of two L1 functions results in an L1 function (by

Fubini's theorem). These two facts plus the re solvent equation (R) imply

that R I (t) is in L1 (R+ ). Since R' is in L1 (R+), then R(t) has a

limit at t = co. But R E L1 (R+ ) so this limit is zero. To see that

R'(-) = 0 note that the convolution of an L1 function with a function

which tends to zero at t = co yields a function which is zero at infinity.

This may be used in (R) to see that R'(-) = 0.

To prove part ii) note that by (2.2) one has

t	 T

x(t+T,T ) f) = R(t)t • (T) + f R(t-s)(f B(s+u)f( T— u)du)ds.

	

0	 0

Therefore, one can es^ i.mate

t	 T
Ix(t.+T ) T .1 f)I < JR(t)I If(T)I + f !R(t.-s)^ (f ^B(s+u)Idu)ds^^fl^ T0 

t	 00

< ^i f tj?t(t ) j + f J R (t- s )l(f 1B(u)Idu)ds).
0	 s

The first term I R	 0 as t	 The second term is the convolution
1

of an Ly function with one which tends to zero &t t 	 Thereforel the

ey_pre s s ion
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t	 00

R (t)I + f IR(t - s )I(f IB(u)Idu)ds
0	 s

is bounded and tends to zero as t -> co. This proves the uniform asymptotic

stability of (L) .

To prove the last assertion note that (2.2) implies that for any

T > 0 one has

	

T	 T	 T t	 Tf Ix(t+T,T,f)Idt < If(T)If IR(t)Idt + f f IR(t-s)I f IB(s+u)I If(T-u)Idudsdt
0	 0	 0 0	 0

00	 T T T

< I f ( T )If IR(t )Idt + f f f I R (t - s )] I B ( s+u )I If(T-u)Idtdsdu
0	 0 0 s

CO	 T oo	 M

< I f(T) I f I R(t) I dt + f( f I R (t) I dt f I B(s) I ds) I f(T_ u) I du.
0	 0 0	 0

Since T > 0 is arbitrary, iii) is proved. Q.E.D.

The proof of the other half of the equivalence depends on the

theory of Lyapunov functionals.

Definition 5. A Lyapunov functional is a continuous function V: R + x

C(R+ ) -->R1 such that V(t,f) is locally Lipschitz continuous in f. The

derivative of V w.r.t. a system of equations

	

(4.1)	 y' (t) = F(t,y),	 F: R+ x C(R+) -^ Rn

is defined by

V(t,f) = lim sup (V(-t+h,f*) - V(t)f))/h
h -4 0+
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where

f(s)	 on 0 < s < t

f(t) + F (t i f)(s-t) on t < s < t + h

Lemma 2. Let V(t,f) and F(t,f) be continuous and locally Lipschitz

continuous in f. Then for any (T,f) in R+ X C(R+ ) the derivative of

V w.r.t. (4.1) may be written in the form

V(T,f) = lim sup (V(T+h,y(-,T,f)) - V(T,f))/h

h -► 0+

where y(•,T,f) is the unique solution of (4.1) with initial values (T,f).

Moreover, let r(t,f) be any continuous, nonanticipative perturbation and

Y(t ) T, f) t n r solution of the problem

Y' (t) = F(t,Y) + P(t)Y)

with initial values (T,f). Given constants A and B > 0 let L be

the local Lipschitz constant for V(t,f) on (0 < t < A, 11flI t < B). If

0 < T < A and 11 fLT < B then

lim sup (V(T+h,Y(•,T,f)) - V(T,f))/h < V(t,f) + LIP(t,f)j.

h -► 0+

The proof is similar to the corresponding proof for the ordinary

differential equation's case. See Driver [2] for more details.

U71
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Theorem 7. Suppose B c L1 (R+ ) and suppose the trivial solution of (L)

is uniformly asymptotically stable. Then there exists a Lyapvnov function

V(t ) f) with the f-)llowing properties.

i) V(t ) f) is locally Lipschitz continuous in f uniformly

in t,

ii) V(t,0) = 0 for all t > 0,

iii) V(t,f) > w0 (jf(t)j) where w0 (y) is a positive definite

continuous function, and

iv) the derivative of V w.r.t. (L) satisfies

V(t, f) < -w10 f ( t )) I )

where wl (y) is a continuous posit.2-ve definite function.

Proof. The proof is essentially the same as the proof of the converse

theorem of Massera [3, Theorem 8]. Pick numbers K and Tm such that if

II fII T 
< 1, then j x (t, T, f) I < K for all t > T and j x (t+j+T, T, f) I < l/m

for all t > 0. Let g(t) be a continuous, nonincreasing, positive func-

tion such that g(t) = K on 0 < t < T1 and g(Tm) = 1/(m-1) for

m = 2 2 3,4....	 Then ix(t+T,T,f)l < g(t) -+0 as t - a* whenever T >

and 11fII T < 1. For this g(t) there exists a function G(y) c C1(R+)

such that G(y) > 0, G I (y) > 0 for all y > 0, G(0) = G'(0) = 0, GI(Y)

is increasing in y and for any constant C > 0 the integrals

Go	 m

f G(Cg(s))ds	 and	 f G'(Cg(s))ds
0	 0
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are finite (see Massera (3, P. 716]). Define

V(t,f) = f G(lx(s+t,t,f)l)ds

0

where x(t,T,f) is the unique solution of (L) with initiate values (T,f).

Since x(t 1 T,f) is continuous on R+ X R+ X C(R+ ) and the

integral in the definition of V converge uniformly for t > 0 and

II f II t < A, for any fixed A > 0, then clearly V: R+ X C(R+ )	 R+ is

continuous and nonanticipative. In order to see that V(t,f) locally

Lipschitz continuous In f uniformly in t > 0 fix any constant B > 0.

Pick f1 and f2 with. 11 f, 11 t and II f2 11 t both less than or equal to B.

Since G I (y) is increasing, then for any pair of vectors a and b one

has

1G (l a l) - G (I b l)I <G' ( g l a l + (1- q)l b l)(l a l-I b 1)	 (0 < q < 1)

< G'(Iai+Ibl)Ia-bI.

By stability there exists a constant K > 0 such that if JIT11 t < 1 then

lx(s+t,t,cp)l < K for all t,s > 0. Thus one has

m

lV(t,fl) - V (t , f2)1 _ f I C ( I x ( s+t , t , f1 )1 - G(Ix(s+t, t,f2l)Ids

co< f G' (1 x(s+t 1 t 1 fl)1 + lx(s+t,t,f2)I)lx(s+t,t,fl-f2 )lds
0

*o

< f G'( 2Bg ( s ))xll l l1 - f21It s0	 G

4
_ (K f G^ 2 Bg (S) )ds)Ilfl-f21It.

,I
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This proves the Li pschitz continuity.

To see that V is positive definite let t > 0 be fixed and

let B be a given constant. By stability if jI f jI t < B, then x(s+t,t,f)

.s uniformly bounded. Hence Ix'(s+t
)
t,f)I < a(B) is uniformly bounded

for t,s > 0 and II fII t < B. This means that

Ix_(s+t,t,f) - f(t)I < s a(B) < If(t)I/2

if 0 < s < If(t)I/(2a(B)). Using this in the definition of V it follows

that

V(t,f) > f (If(t)I)G(I f (t)I/2 )dt = wo(If(t)I)
0

if IIfII t ` B and w(y) = y/(2a(B)).

Finally, note that

co

V(t,x(t I T I f)) = f G(Ix(s+t,t,x(t,T,f))I )ds
0

cc

= f G(Ix(s+t,T,f) I )ds
0

Go

= f G(Ix(s,T,f)I )ds.
t

Therefore, the derivative of V w.r.t. (L) is

V(t,f) = -G(If(t)I) = -wl(If(t)I)-

This i'unction is negative definite. Q.E.D.
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Theorem 8. Suppose B f- L1(R +) and (L) is uniformly asymFtoti.cal_y stable.

Then the perturbed equation (2.1) has the followin, ;ype cf stabili.ty:

Given any e > 0 there exist two positive nu;nbers r l and ^2 such that

for any initial values (T, f), if 11fil r
 < 11 and if P(t,_f) is any con-

tinuous, nonanticipative function with 1P(t 1 f)1 < 112	 n the set

(t > 0, 11 f lI t < e;, then 	 y solution y(t ) T ) f,P) of (2.1) exists and

satisfies	 y(t, T ) f, P) <e for all t > T.

Proof. Given e > 0,	 let w0 (y) and ml (y) be the positive definite

functions given in Theorem 7 and let L be the Lipschitz constant for

V(t,f) when jjfjj t < e. Define m = min (w0 (y): Jyj = e). Since V(t,f)

< Ljjfjj t when jjfjj t < e, then V(t,f) < m if 11fll t < rj 1 and q, =

min (e/2, rl(2L) 1). Let a = min (wl (y) = ^ l < jyj < e) and set n2 =

a/(2L). This choice of 91 and q2 will do.

Let f and P be majorized by r l and 92 and let (p(t) =

y(t+T, T ) f,P). Since q(t) is continuous and 1q)(o)l = jf(0)j < ^ 1 < e,

then jq)(t)j < e for t sufficiently small. If (p (t) gets into the

region nl < jq)(t)j < e, then in this region the derivative Vp of V

w.r.t. (2.1) satisfies

Yt+ •r,(p) < VL(t+T,?) + LI P(t+T,(P) I

< -ml (I4) ( t ) I) + Lq2

< -a + Ia/(2L) = -a/2 < 0.
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This means that V(t+T,(p) is decreasing in this region. In particular,

V(ti-T )cp) < max (V(t,f): t > 0, llfll t < r] 1 ) < m so that 1p(t)I < e. Since

1q, (t) 	 can never reach the circle lq).(t)l = e, the proof is complete. Q.E.D.

Corollary 3. If B e L1 (R+ ) and if (L) is uniformly asymptotically

stable, then the resolvent E(t) associated with the linear system (L)

is of class L1(R+).

Proof. The solution of the inhomogeneous problem

t
y'(t) = Ay(t) + f B(t-S)y(s)ds + F(t), y(0) = 0

0

is given by

t
(4.2)	 y(t) = f R(t-s)F(s)ds	 (t > 0).

0

If F is bounded and continuous on R+, then by Theorem 8 (with P(t,f)

eF(t) and with e sufficiently small) it follows that ey(t) is bounded

on R+ . Thus y(t) is bounded. Since y(t) is given by (4.2), the

conclusion of the corollary follows from a result of Corduneanu [4,

Theorem 31. Q.E.D.

V. Some Consequences of Condition (D) .

Let B e L•1 (R+), let B (s) be the Laplace transform of B and

assume that

(D)	 det (s-A-B*(s)) # 0	 when Res > 0.
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Condition (D) is certainly necessary for uniform asymptotic stability of

(L). Here we seek additional conditions on B which insure uniform

stability or uniform asymptotic stability of (L).

Theorem 9. Sui,pose B e L1 (R+ ) and suppose (D) is true.

If for some p in the interval l < p < 2 one has

CO	 0o

l (I I B(u) I du) pds < co;
0 s

then	 (L) is uniformly asymptotically stable.

ii) If there exists a	 p	 in 1 < p < 2	 such that

00 ^

I (I IB(u )I pdu) l/pds <
0 s

then the trivial solution of (L) is uniformly stable and asymptotically

stable.

Proof. By Lemma 1 above the transforms R*(iT) and (R')*(iT) are of

class Lp (-00,w) for 1 < p < 2. The Fourier transforms of these functions

are 2Tm(-t) and 2iTR' (-t) on - ao < t < 0 and zero on 0 < t < w. But

the Fourier transform of an LP function with 1 < p < 2 is of class

Lq (_.,00) where l/p a• l/q = 1, see Titchmarsh[. 5, p. 96]. Therefore, R

and R' a Lq(0,=) for all q in the interval 2 < q < oo. This implies

that R(t) -40 as t -► w. The argument used in the proof of Theorcn 5

shows that R' (t) -► 0 ass t -► oo.

Let s and t be numbers bigger than one and let r be the

solution of the equation
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l/r = lls + l/t - 1.

if r > 1. then the convolution of a function in L 5 (R+ ) with a function

in Lt (R+ ) yields a function in L 1 (R+ ), sec Titchmarsh[5, p. 971. If

r = +oo, the resulting function is in L 
CID 
(R+ ) and tends to zero as t - ► oo,

see e.g., Ru din [6, p. 4, part (d)].

To prove i) we use Theorem 4. Let X(t,F) , be a solution of

(L.) with initial value F at T = 0 1 that is

t	 w
X(t,F) = R(t)F(0) + f R(t-s)(f B(u)F(u-s)du)ds.

•	 0	 s

Then one has

t	 ao

IX(t,F)I < IR(t)I IF(0)I + f IR(t-s)I f lB(u)IdudsIIFjj0
0	 s

00

(I R (t)I + f I R (t- s )l f IB(u)lduds)IIFII0'
0	 s

We know that I R (t) I - ► 0 as t --> -. If

b ( s ) = f IB(u)ldu
s

is in Lp (R) for some p in 1 < p < 2, then since R e Lq(R+) for

q = p/(p-1), then the convolution is bounded and tends to zero as t

If b(s) is of class L1 (R+), then since R(t) -* 0 as t - ► w, the con-

volution still tends to zero as t -^ co. Thus (L) is uniformly

asymptotically stable.

i.
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To prove ii) first note that if 1/p + 1/q = 1, then

t	 00	 00 t
Z(t) = f IR(t-s)l f IB(u)lduds = f f JR(t -s)l IB(s+u)Idsdu

0	 s	 0 0

• fGo( ftlR( t-s)Igds)1/q(ftlB(s+u)lPds)1/Pdu
0 0	 0

• f-( f00IR (s)Igds)1/q(f00IB( s)IPds)1/pdu .
— 0 0	 u

Thus Z(t) is uniformly bounded on R+ . Since Z(t) > y(t), then by

Theorem 1 it follows that (L) is uniformly stable. To see that (L)

is asymptotically stable consider a solution

	

t	 T

x(t+,r,,T,f) = R(t)f(T) + f R(t-s)f B(s+u)f( T- u)duds.

	

0	 0

We know that R(t) -+ 0 as t -4 co. Consider the second term

t	 T

x0 (t) = f R(t-s)(f B(s+u)f(T-u)du)ds.
0	 0

If q = p/ (p-1) , then

IftB(s+, ^f(T-u)dul < (fTIB(s+u)lPdu)1/P(fTlf(T-u)Igdu)1/q
0	 0	 0

< ( f** I B (u) I Pdu)1/P(f T l f (u ) I gdu)1/g.
s	 0

24

Therefore, x0 (t) is the convolution of R e Lg (R+) with an Ll function,

that is x0 (-) c Lg(e). Since x0 (t) has a bounded derivative, it tends
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j

to zero as t -a co. Q.E.D.

As an example if B(t) = &(t-a) as t -4 co for some constant
	 s

a > 3/2 , then the hypotheses of Theorem 9, i) and ii) are satisfied. One

car: use any value of p in the range ((Y.-1 )
-1 

< p < 2. If

Go

f IB(t)Idt= o( sa) as s
s

where a > 1.., then the hypotheses of part i) are true.

Theorem 10. Suppose B e L1 (0,-o) and (D) is true. Suppose B* (iT) is

locally Holder continuous with exponent a

IB*(iT+ih) - B*(iT—ih)I < K(T)ha

where K(T)(1+T2)-1 E L2 (-o,00). If either a > 112 or if 0 < a < 1/2

and there exists a number q > 2 such that

(5.1)	 f 00(f 00 1 B(u) I du) gds < ao	 and	 a + 1/q > 1/21
0 s

they, (L) is uniformly asymptotically stable. On the other hand if

0 < a < 1/2 and there exists a number q > 2 such that

(5.2)	 f ^(f W I
 B(u) 

I 
du) 1/qds < Qo and a + 1/q > 1/2)

0 s

then_ (L) is both uniformly stable and asymptotically stable.
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i

Proof. Since R* ( iT) _ (iT-A-B*(iT)) 1 and B* ( iT)	 0 as t -► +-o, then

R* ( iT+ih) - R* ( iT-ih) = (2ih+B* ( iT-ih) - E* ( iT+iti)) 0(T 2).

i

The Holder continuity of B * and the integrability of K(T) imply that

Go

f R* ( iT+ih) - R* ( iT-ih) pdT = &(ham')
-0o

as h --4 0 for any p in (1,2]. This means that the Fourier transform

of R* ( iT) is in Lr (-
,
O,0o) for all r in the range	 1

P(P+aP- 1) < r < P(P- 1) 1,

see Titchmarsh [5, p. 1151. The maximum value of the lower limit occurs

when p = 2 so that

2 (2a+1) -1 < r < 2.

In particular if 1/2 < a < 1, then R e Ll (R+) and (L) is uniformly

asymptotically stable by Theorem 6 above..

Suppose 0 < a < 1/2. Then the function y(t) defined in

Theorem 1 above satisfies

t	 co

y(t) < Z(t) = f JR(t-s)l(f IB(u)ldu)ds.
0	 s

But Z(t) is the convolution of a function in L r (2(2cx+l)
-1
 < r < 2)
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with a function in Lq . This range of values for r includes a value for

which	 l/q + 11r = 1. Therefore, Z(t) -a 0	 as t -^ oo.

On the other hand if (5.2) is true, then cne can estimate

w t
Z(t) = f {j JR(t-s)I IB(s+u)Ids)ds

0 0

f Go( f 

t
ft J R (t - s ) j rds ) l/r { f t I B (s+u) I gds) 1/q du

0 0	 0

< {f^IR(s)Irds}l^r j^{j^IB(s)Igds)l/gdu.
0	 0 u

Since Z(t) is bounded on R+ , then Theorem 1 asserts the uniform stability

of (L). As in the proof of Theorem 9 one can show that x O N

x(t+T, T, f) - R(t)f(T) is in Lq (R+ ) and so x0 (t) -a 0 as t	 This
i

will prove the asymptotic stability of (L). Q.E.D. 	 ;.,.

Note that in Theorem 10 the assumption that B* is Holder con-
1

ti	 )(nuous and K(T) 	 )2 a L2 (-^o,^o) could be replaced by any other

assumption which will insure that

f  IR* (iT+ih) - R* (iT-ih)I 2dT = O(h2a)
- ao

as h -^ 0.

It is easy to find examples where the hypotheses of Theorem 10

may be verified. Suppose tB(t) e Lp (0,w) for some p in 1 < p < 2.
m	 i

Let l/p + l/q = 1. Then the function d/ds[B*(s)] = f exp(-st)(-tB(t))dt
0

is uniformly integrable L  on each vertical line segment in Res 0,

say
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x	 ^
sup (f 

I 

dB 
(a+,,,)IgdT: a > 0) = A  <

0

(see Titchmarsh [5, P. 97, line 4.1.2]). Thus for any a > 0 the Holder

inequality implies that

(5.3)	 IB*(ar+iT+ih) - B*(a+i T-ih)I < A(2h)a

on ..co < T < co ;here h is any positive constant and a = l/p. Since

f
00
IB(t)Idt = f

CO
ItB(t)I •t -1dt < (f 00ItB(t)

I
pdt)1/p( f t-gdt)l/q ; .)

then B E L1(0,-). Thus B* (s) is continuous on the half plane Res > 0.

The continuity of B* (s) allows one to take the limit as Q . —^ 0+ in (5.3)•

It follows that (5.3) remains true when a = 0.

For e;:ample, if tB(t) E L2 (R+ ), then (5.3) is true with a = 1/2.

In addition, one has

f Go(f
ao) 

B (u) : du) 2ds = f O" (f W I uB (u) I - u-1 du) 2ds
S	 s

00 00

• ! (f I uB (u) I 2du) (s-3/3)ds
s

• (f G* I uB(u) I 2du) foo ( s -3 /3)ds < ^.
0

Therefore, (5.1) is true with a = 1/2 and q = 2.
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VI. Asymptotic Stability.

The purpose of this section is to prove the following theorem.

Theorem 11. Let B e L1 (R+) and let (D) be true. Then the trivial solu-

tion of (L) is asymptotically stable. Moreover, for any initial value 	
d

(T ,f) in R+ x C(R+
) the solution x(t,T,f) of (L) is of class Lq[T,^)

for each q e

Proof. Let x(t) = x(t+T,T,f) so that

t	 T

(6.1)	 x(t) = R(t)f(T) + f R(t-s)(f B(s+u)f(T-u)du)ds,
0	 0

for all t > 0. From Lemma 1 we know that R and R' e L q (R+) for all

q > 2, and that R(t) -+ 0 as t -, co. The Laplace transform of the second

term in (6.1) is

T 00

cp(s) = R* (s) f ( f exp(-st)B(t+u)dt)f(T-u)du,
0 0

where R* (s) is the transform of the resolvent R(t). By Lemma 1 above

one has

IT(s)I <K(1+lsl) 1 f (f IB(t)ldt)If(T-u)ldu

< K(1+I s I) -1 f*O I B(t) l dt f T l f (u) l du.
0	 0

In particular, then Icp(i-,)l a Lp (-^, m) for any p in (1,2], The Fourier

transform of cp(iT) is then of class Lq(-*,w) for all q in 2 < q < w



(c.f. [5, P. 97)). This Fourier transforin is essentially the second term

in (6.1). Therefore, X(t) = x (t+T ) T, f) e Lq (0, w) for 2 < q < ^.

When p = q = 2 in the analysis above, then the term

t	 T

Z(t) = f (t-s)(f B(s+u)f(T-u)du)ds
0	 0

is in L2 (0,-) and

Go
	 2f I Z ( t) 1dt < ^2 K f ^I B (t ) I dt f T I f (u) I du f (1+T2 1) d r

0	 0	 0	 -00

•	 T

= K1 f If(u)Idu,
0

where Kl is a fixed constant independent of T and f. By (6.1) it

follows that I x(t) I < IR (t) I I f (T) I + I Z (t) I E L2 (0, oo) . Since

t	 T	 1

XI (t) = Ax (t) + f B(t-s)x(s)ds + f B(s+,)f(T-u)du,
0	 0

F	 then x 1 (t) is the sum of two L2 functions and a function which tends

to zero as t -+ -. Thus x(t) is also uniformly continuous on R + and

x(t) —► 0 as t	 ^.
	 I

In order to prove stability note that

T t
Ix(t)I < IR(t)I If(T )I + If (f R(t-s)B(s+u)ds)f(T-u)dul

0 0

T ao

IR(t)I I f ( T )I + sup IR(t)I f (f IB(u)Idu)If(T-u)Idu
t>0	 0 u

30
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CO	 T

< sup JR(t)I(If(T)j + f IB(u)Idu f lf(u)ldu).
t>0	 0	 0

This shows that x(t) is uniformly small when f(u) is small uniformly

on 0 < u < T. Q.E.D.

The asymptotic stability could also be proved by showing that

the functional

Go

V(t ) f) = f jx(s+t .9 t .9 f)j gds, (t^f) e R+ X C(R+)
0

is a Lyapunov functional (for any q in [ 2,00)) which satisfies the

hypotheses of an asymptotic stability theurem of Driver [2, Theorem 6].

VII. Some Examples and Questions.

In order to obtain examples which satisfy (D) one can pick any

function B e L1 (R+). Then pick a constant A < -f OOjB(t)jdt. It follows
0

that (D) is always true. To find an example with A = 0. let

00	 '

B(t) _ -	 a exp (-b t)
n=0 n
	 n

where the an and b  are positive and where

as	 Go

Z an < •	 and	 Z (a /b < 00.

n=0	 n=0

The convergence of these series is sufficient to insure that B is in

L1 (R+). Then

n
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CO

-B*(s) _ E an(s+bn)'1'
n=0

so that if s = a + iT and a > 0 one has

Re(s-B*(s)) = c +	 an(a+bn)^s+bnl-2 > 0.n=0 

Therefore, s - B* (s) # 0 when Res > 0. Since the an and b  are all

positive it is easy to compute certain integrals involving B(t). For

example

00

	 2o	 n^ tB(t) ^dt = 

2 
^Oan m(

bn+bm)-3.

If this last sum is finite, then Theorem;0 applies.

The results in this paper suggest several interesting questions.

For example, in Theorem 9, part i) is the conclusion still true if p is

in the range 2 < p < co? Similarly in part ii) is the conclusion true if

2 < p < w? In Theorem 9, part ii) can the conclusion be strengthened to

uniform asymptotic stability? If these results are true ., 	 are the

hypotheses of Theorem 11 sufficient for uniform asymptotic stability?

Hannsgen [7] has given sufficient conditions on the coefficients

A and B(t) in (L) so that the resolvent satisfies R*(iT) c Lp(-W,W)

for 1 < ' p < 2 even though B(t) is not in L1 (R+). Under Hannsgen's

assumptions it would be interesting to see what types of stab:.Aty are

+present. Even more important, can one show that R(t) or R I (t) e Ll(R)?



1 i

Bibliography

1. S.I. Grossman and R.K. Miller, Perturbation theory for Volterra Integro-

differential systems, J. Diff. Equations 8(1970), 457-474.

2. R. D. Driver, Existence and stability of solutions of a delay-differential

system, Arch. Rat. Mech. Anal. 10(1962), 401-426.

3. J. L. Masscra, On Liapunow s conditions of stability, Ann. Math. 50(1949),

705-721.

4. C. Corduneanu, Problemes globaux dans la theorie des equations integrales

de Volterra, Ann. Mat-. Pura. Appl. 67(1965), 349-363

5. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals,

Oxford University Press, 1937-

6. Walter Rudi., Fourier . f.nalysis on Groups , Interscience, N. Y., 1962

7. K. B. Hannsgen, Indirect Abelian theorems and a linear Volterra equation,

Trans. A.M.S. 142(1969), 539-555.

191
	

i


	GeneralDisclaimer.pdf
	0008A02.pdf
	0008A03.pdf
	0008A04.pdf
	0008A05.pdf
	0008A06.pdf
	0008A07.pdf
	0008A08.pdf
	0008A09.pdf
	0008A10.pdf
	0008A11.pdf
	0008A12.pdf
	0008B01.pdf
	0008B02.pdf
	0008B03.pdf
	0008B04.pdf
	0008B05.pdf
	0008B06.pdf
	0008B07.pdf
	0008B08.pdf
	0008B09.pdf
	0008B10.pdf
	0008B11.pdf
	0008B12.pdf
	0008C01.pdf
	0008C02.pdf
	0008C03.pdf
	0008C04.pdf
	0008C05.pdf
	0008C06.pdf
	0008C07.pdf
	0008C08.pdf
	0008C09.pdf
	0008C10.pdf
	0008C11.pdf

